Εξώφυλλο

Φασματική ανάλυση σεισμικών καταγραφών του σεισμικού παρατηρητηρίου argonet στην Κεφαλονιά = Spectral analysis of seismic records taken by the seismic observatory argonet in Caphalonia.

Δημήτριος Αθανάσιος Μαδέλης

Περίληψη


Ο επί τόπου υπολογισμός της απόσβεσης των σεισμικών κυμάτων, είναι μια δύσκολη διαδικασία λόγω ότι απαιτεί μια κατακόρυφη παράταξη γεώτρησης. Για την εκτίμηση της απομείωσης των διατμητικών κυμάτων, μεταξύ άλλων παραμέτρων, χρησιμο-ποιήθηκε και η παράμετρος kappa. H παράμετρος αυτή, η οποία παρουσιάστηκε από τους Anderson και Hough (1984), σχετίζεται με την απόσβεση υψηλών συχνοτήτων και παρόλο που ακόμη δεν είναι πλήρως κατανοητή, έχει γίνει ένα χρήσιμο εργαλείο στη τεχνική σεισμολογία. Η λειτουργία κατακόρυφης παράταξης του δικτύου ARGONET τα τελευταία 5 χρόνια στην υψηλής σεισμικότητας περιοχή της Κεφαλονιάς, παρείχε ένα πλούσιο σύνολο δεδομένων από καταγραφές σεισμών που συνέβησαν σε κοντινή απόσταση από την παράταξη (www.argonet-kefalonia.org). Η τοποθεσία του ARGONET, έχει χαρακτηριστεί από επί τόπου έρευνα και εργαστηριακό έλεγχο και συμπεριλαμβάνει 6 επιταχυνσιογράφους ευρείας ζώνης, 2 στην επιφάνεια και 4 εντός της γεώτρησης σε διάφορα βάθη μέχρι το γεωλογικό υπόβαθρο στα 84m. Προκειμένου να υπολογιστεί η παράμετρος kappa (κr) σε όλους τους επιταχυνσιογράφους, επιλέχθηκε ένα σύνολο δεδομένων από 82 σεισμούς με μεγέθη 3.0≤M≤ 4.8 και επικεντρικές αποστάσεις Rep.≤40km. Η συχνότητα fmax επιλέχθηκε οπτικά για κάθε καταγραφή, καθώς και η συχνότητες fE και fN, ορίζοντας το εύρος της υψηλής συχνότητα όπου μετρήθηκε η παράμετρος kappa. Η παράμετρος kappa εξετάστηκε ως συνάρτηση της απόστασης για κάθε επιταχυνσιογράφο και υπολογίστηκε η μηδενικής απόστασης τιμή της κ0. Επιπλέον, λαμβάνοντας υπόψη ότι το κ0 σχετίζεται με τη συνολική αποτελεσματική απόσβεση σε υψηλές συχνότητες (Qs=Qeff=1/Qsc +1/Qan), στα ανώτερα στρώματα πάχους 84m, και με το κ0 να είναι ανάλογο του [Qeff]-1, βρέθηκε ότι ο εκτιμώμενος παράγοντας ποιότητας Qeff, παρέχει τιμές αρκετά κοντά σε εκείνες από τις εργαστηριακές δοκιμές ή εκείνα του εμπειρικού κανόνα Qs~Vs/10, που είναι ευρέως αποδεκτός. Με τη σειρά του, η θεωρητική εκτίμηση της απόκρισης θέσης (1D) χρησιμοποιώντας τον παράγοντα απόσβεσης που υπολογίστηκε επί τόπου, στη παρούσα εργασία, μπορεί να παρέχει ρεαλιστικά αποτελέσματα ενίσχυσης της εδαφικής κίνησης, σε σχέση με τη σεισμική διέγερση του βράχου.

   The in-situ estimation of seismic wave attenuation is a difficult task due to the requirement of a borehole vertical array.  For the estimation of shear wave attenuation, among other parameters, the so-called kappa is used. The parameter κ (kappa), introduced by Anderson and Hough (1984), is related to high-frequency attenuation, and although yet least understood, has become a useful tool in engineering seismology. The operation of the ARGONET vertical array during the past 5 years in a high seis-micity region of Europe (Kefalonia, Greece), provided a rich dataset of earthquake recordings occurred in the proximity of the array (www.argonet-kefalonia.org). The site of the ARGONET array has been characterized by in situ investigation and laboratory testing and consists of 2 surface and 4 borehole broadband accelerometers in various depths up to the seismic bedrock at 84m. In order to estimate the kappa-κ parameter in all 6 accelerometers a dataset of 82 earthquakes with magnitudes 3.0≤M≤ 4.8 and epicentral distances Rep.≤40km were selected. The fmax is visually picked for each recording as well as the frequencies fE, fN, defining the high frequency range where kappa parameter is measured. The parameter kappa is examined as a function of distance for each accelerometer and its zero-distance value, κ0 is calculated. In addition, provided that κ0 is related to the total effective attenuation in high frequencies, Qs=Qeff=1/Qsc +1/Qan, in the upper 84m thickness layers and with κ0 being proportional to [Qeff]-1, it is found that the calculated with this approach Qeff, provides values reasonably close to those of from laboratory testing or those of the widely accepted rule of thumb Qs~Vs/10. In turn, theoretical 1D site response estimation using attenuation factor calculated in-situ as in this study, may provide realistic results of ground motion amplification, with respect to bedrock seismic excitation.

Πλήρες Κείμενο:

PDF

Αναφορές


Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 72(4), 1217–1231. https://doi.org/10.1029/jz072i004p01217

Aki, K. (1988). Local site effects on strong ground motion. Earthquake Engineering and Soil Dynamics II—Recent Advances in Ground-Motion Evaluation, 103–155.

Anderson, J. G., & Hough, S. E. (1984). Spectrum of Acceleration At High Frequencies. Bulletin of the Seismological Society of America, 74(5), 1969–1993.

Boore, D. M., & Joyner, W. B. (1982). The empirical prediction of ground motion. Bulletin of the Seismological Society of America, 72(6B), S43-60.

Boore, D. M., Thompson, E. M., & Cadet, H. (2011). Regional correlations of V s30 and velocities averaged over depths less than and greater than 30 meters. Bulletin of the Seismological Society of America, 101(6), 3046–3059.

Borcherdt, R. D. (2012). VS30 – A Site-Characterization Parameter for Use in Paper Title Line Simplified Building Codes, Earthquake Resistant Design, GMPEs, and ShakeMaps. 15th World Conference on Earthquake Engineering, Lisbon Portugal, 10 (2010).

Briole, P., Elias, P., Parcharidis, I., Bignami, C., Benekos, G., Samsonov, G., Kyriakopoulos, C., Stramondo, S., Chamot-Rooke, N., Drakatou, M. L., & Drakatos, G. (2015). The seismic sequence of January-February 2014 at Cephalonia Island (Greece): Constraints from SAR interferometry and GPS. Geophysical Journal

International, 203(3), 1528–1540.

G. Didaskalou & Partners SP. (2015). GEOTER Factual Report, 2015. Geotechnical and Geophysical Investigation in Koutavos Park of Argostoli at the Island of Cephalonia, Greece.

Grendas, I., Theodoulidis, N., Hatzidimitriou, P., Margaris, B., & Drouet, S. (2018). Determination of source, path and site parameters based on non-linear inversion of accelerometric data in Greece. Bulletin of Earthquake Engineering, 16(11), 5061–5094.

Hanks C. (1982). fmax. Bulletin of the Seismological Society of America, 72(6), 1867–1879.

Hermann R. (1985). An extension of random vibration theory estimates of strong ground motion to large distances. Bulletin of the Seismological Society of America, 75(5), 1447–1453.

Hough S . E., A. J. G. (1988). Attenuation Near Anza, California. Bulletin of the Seismological Society of America, 78(2), 672–691.

Jones, S. (2010). Ground vibration from underground railways: how simplifying assumptions limit prediction accuracy. Response, September. http://www.dspace.cam.ac.uk/handle/1810/226848

Karakostas, V., Papadimitriou, E., Mesimeri, M., Gkarlaouni, C., & Paradisopoulou, P. (2015). The 2014 Kefalonia Doublet (M w 6.1 and M w 6.0), Central Ionian Islands, Greece: Seismotectonic Implications along the Kefalonia Transform Fault Zone. Acta Geophysica, 63(1), 1–16.

Konno K., O. T. (1988). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88, 228–241.

Ktenidou, O. J., Cotton, F., Abrahamson, N. A., & Anderson, J. G. (2014). Taxonomy of κ: A review of definitions and estimation approaches targeted to applications. Seismological Research Letters, 85(1), 135–146.

Rogers, D, V. (2013). Types Of Earthquake Waves. http://allshookup.org/quakes/wavetype.htm

Slideshare.net. κινήσεις λιθοσφαιρικών πλακών στην ελλάδα. Retrieved December 10, 2021, from https://www.slideshare.net/yiankarayian/ss-11762435

Stiros, S. C., Pirazzoli, P. A., Laborel, J., & Laborel‐Deguen, F. (1994). The 1953 earthquake in Cephalonia (Western Hellenic Arc): coastal uplift and halotectonic faulting. Geophysical Journal International, 117(3), 834–849.

Theodoulidis, N., Hollender, F., Mariscal, A., Moiriat, D., Bard, P. Y., Konidaris, A., Cushing, M., Konstantinidou, K., & Roumelioti, Z. (2018). The ARGONET (Greece) seismic observatory: An accelerometric vertical array and its data. Seismological Research Letters, 89(4), 1555–1565.

Theodoulidis, Nikos, Hollender, F., Mariscal, A., Moiriat, D., Bard, P.-Y., Konidaris, A., Cushing, E., Konstantinidou, K., & Roumelioti, Z. (2018). The ARGONET (Greece) seismic observatory: An accelerometric vertical array and its data. Seismological Research Letters, 89.

Valkaniotis, S., Ganas, A., Papathanassiou, G., & Papanikolaou, M. (2014). Field observations of geological effects triggered by the January-February 2014 Cephalonia (Ionian Sea, Greece) earthquakes. Tectonophysics, 630(C), 150–157.

Β. Κ. Παπαζάχος , Γ. Φ. Καρακαΐσης, Π. Μ. Χ. (2005). Εισαγωγή στη Σεισμολογία. EΚΔΟΣΕΙΣ ΖΗΤΗ.

Γ.Α. Παπαδόπουλος, Μ. Σαχπάζη, Β. Καραστάθης, Α. Γκανάς, Γ. Μιναδάκης, Ι., Μπασκούτας, Α. Μόσχου, Α. Μουζακιώτης, Κ. Ορφανογιαννάκη, Ε. Δασκαλάκη, Σ., &

Λιακόπουλος, Α. Παπαγεωργίου, Ι. Τ. (2014). ΟΙ ΣΕΙΣΜΟΙ ΤΟΥ ΙΑΝΟΥΑΡΙΟΥ-ΦΕΒΡΟΥΑΡΙΟΥ ΤΟΥ 2014 ΣΤΗΝ ΚΕΦΑΛΟΝΙΑ: ΜΙΑ ΠΡΩΤΗ ΕΚΘΕΣΗ ΕΘΝΙΚΟ ΑΣΤΕΡΟΣΚΟΠΕΙΟ ΑΘΗΝΩΝ ΓΕΩΔΥΝΑΜΙΚΟ ΙΝΣΤΙΤΟΥΤΟ.

Λεκκας, Ε., Δαναμος, Γ., & Μαυρικας, Γ. (2001). ΓΕΩΛΟΓΙΚΗ ΔΟΜΗ ΚΑΙ ΕΞΕΛΙΞΗ ΤΩΝ ΝΗΣΩΝ ΚΕΦΑΛΛΟΝΙΑΣ ΚΑΙ ΙΘΑΚΗΣ*. Bulletin of the Geological Society of Greece, 1, 11–17.

Μουντράκης, Δ. Μ. (2020). Γεωλογία και Γεωτεκτονική Εξέλιξη της Ελλάδας Β’ Έκδοση. University Studio Press.

Παπαζάχος, Β. , Παπαζάχου, Κ. (2003). Σεισμοί της Ελλάδας, Γ’ ΕΚΔΟΣΗ. EΚΔΟΣΕΙΣ ΖΗΤΗ.

Πιτιλάκης, Κ. Δ. (2010). Γεωτεχνική Σεισμική Μηχανική. Εκδόσεις Ζήτη.

''Η Γεωλογία της Κεφαλονιάς | Γεωπάρκο Κεφαλονιάς - Ιθάκης." Retrieved December 10, 2021, from https://kefaloniageopark.gr/geologia

"Www.Seismoi.Gr" (https://www.seismoi.gr/toellhnikotoxo.htm).

"ΠΕΡΙ ΣΕΙΣΜΩΝ." (http://users.sch.gr/xtsamis/OkosmosMas/Seismoi.htm).


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.