Εξώφυλλο

Provide Dietary adaptations of the Early Pleistocene Gerakarou mammal community (Mygdonia Basin, Greece) = Διατροφικές προσαρμογές της κάτω πλειστοκαινικής κοινότητας θηλαστικώντης Γερακαρούς (Μυγδονία λεκάνη, Ελλάδα).

Evangelia Dimitrios Alifieri

Περίληψη


The Early Pleistocene is a well-represented time period in the fossil record of Eastern Europe, but many questions remain about the paleoenvironment and its role in the faunal dispersal during that time period, including the genus Homo. The Early Pleistocene locality of Gerakarou-1 (2–1.8 Ma) situated in northern Greece (Mygdonia Basin) can provide an insight into the environmental conditions of that
time and area. To investigate the paleoenvironment of Gerakarou-1 the dental material of its fossil ungulates was studied, using dental microwear and mesowear analyses. The mesowear analyses also include a newly developed, quantitative method. Extant species with known diets and dietary categories ranging from grazers to browsers were used to better characterize the diet of fossil species. Mixed feeders were dominant in the faunal assemblage of Gerakarou-1, indicating a mosaic environment (open forest-savanna woodland).
Keywords: Lower Pleistocene, Paleoenvironment, Greece, Mygdonia Basin, Gerakarou, Feeding ecology, Microwear, Mesowear

Αν και το Κάτω Πλειστόκαινο είναι μια σχετικά καλά αντιπροσωπευμένη χρονική περίοδος στο απολιθωματοφόρο αρχείο της Ανατολικής Ευρώπης, πολλά ερωτήματα παραμένουν ανοικτά σε σχέση με το παλαιοπεριβάλλον και το ρόλο του στις πανιδικές μεταναστεύσεις, συμπεριλαμβανομένου και του γένους Homo. Η Κάτω Πλειστόκαινικη θέση Γερακαρού-1 (2–1,8 Ma), που βρίσκεται στην Βόρεια Ελλάδα (Μυγδονία Λεκάνη), μπορεί να προσφέρει σημαντικές πληροφορίες για τις περιβαλλοντολογικές  υνθήκες εκείνης της περιόδου και περιοχής. Για την έρευνα του παλαιοπεριβάλλοντος στο οποίο ανταποκρίνεται η παλαιοπανίδα της Γερακαρούς, μελετήθηκαν τα οδοντικά στοιχεία των απολιθωμάτων οπληφόρων θηλαστικών, χρησιμοποιώντας οδοντικές αναλύσεις μικροτριβής και μεσοτριβής. Οι αναλύσεις μεσοτριβής εμπεριέχουν και μια πρόσφατα αναπτυγμένη, πιο ποσοτική μέθοδο. Σημερινά είδη με γνωστή διατροφή και διατροφικές κατηγορίες που κυμαίνονται από “browser” (κορφολογητές) σε “grazer” (βοσκητές), χρησιμοποιήθηκαν για να κατηγοριοποιήσουμε καλύτερα τα απολιθωμένα είδη. Η μελέτη υποστηρίζει ότι η πανίδα της Γερακαρού κυριαρχείται από taxa με ενδιάμεσες διατροφικές προτιμήσεις (“mixed feeders”), υποδεικνύοντας ένα μωσαϊκό περιβάλλον (ανοικτά δάση-δασώδεις σαβάνες /“open forest-savanna woodland”).
Λέξεις Κλειδιά: Κάτω Πλειστόκαινο, Παλαιοπεριβάλλον, Ελλάδα, Μυγδονία Λεκάνη, Γερακαρού, Διατροφική Οικολογία, Μικροτριβή, Μεσοτριβή

Πλήρες Κείμενο:

PDF

Αναφορές


Ackermans, N.L., 2020. The history of mesowear: a review. PeerJ 8, e8519. https://doi.org/10.7717/peerj.8519

Ackermans, N.L., Martin, L.F., Codron, D., Hummel, J., Kircher, P.R., Richter, H., Kaiser, T.M., Clauss, M., Hatt, J.M., 2020a. Mesowear represents a lifetime signal in sheep (Ovis aries) within a long-term feeding experiment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 553, 109793. https://doi.org/10.1016/J.PALAEO.2020.109793

Ackermans, N.L., Winkler, D.E., Martin, L.F., Kaiser, T.M., Clauss, M., Hatt, J.-M., 2020b. Dust and grit matter: abrasives of different size lead to opposing dental microwear textures in experimentally fed sheep (Ovis aries). J. Exp. Biol. 223. https://doi.org/10.1242/JEB.220442

Bärmann, E.V., Rössner, G.E., 2011. Dental nomenclature in Ruminantia: Towards a standard terminological framework. Mamm. Biol. 76, 762–768. https://doi.org/10.1016/j.mambio.2011.07.002

Ben-David, M., Flaherty, E.A., 2012. Stable isotopes in mammalian research: A beginner’s guide. J. Mammal. 93, 312–328. https://doi.org/10.1644/11-MAMM-S-166.1

Berlioz, É., Kostopoulos, D.S., Blondel, C., Merceron, G., 2017. Feeding ecology of Eucladoceros ctenoides as a proxy to track regional environmental variations in Europe during the early Pleistocene. Comptes Rendus - Palevol 17, 320–332. https://doi.org/10.1016/j.crpv.2017.07.002

Berlioz, E., Leduc, C., Hofman-Kamińska, E., Bignon-Lau, O., Kowalczyk, R., Merceron, G., under review, Dental microwear foraging ecology of a large browsing ruminant in Northern Hemisphere : the moose (Alces alces), Palaeogeography, Palaeoclimatology, Palaeoecology.

Blondel, C., Merceron, G., Andossa, L., Taisso, M.H., Vignaud, P., Brunet, M., 2010. Dental mesowear analysis of the late Miocene Bovidae from Toros-Menalla (Chad) and early hominid habitats in Central Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 292, 184–191. https://doi.org/10.1016/J.PALAEO.2010.03.042

Bookstein, F.L., 1992. Morphometric Tools for Landmark Data, Morphometric Tools for Landmark Data. Cambridge University Press. https://doi.org/10.1017/CBO9780511573064

Calandra, I., 2011. Tribology of dental enamel facets of Ungulates and Primates (Mammalia): Tracing tooth-food interaction through 3D enamel microtexture analyses.Ph.D. thesis, Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky. 175 pp.

Calandra, I., Merceron, G., 2016. Dental microwear texture analysis in mammalian ecology. Mamm. Rev. 46, 215–228. https://doi.org/10.1111/mam.12063

Calandra, I., Schulz, E., Pinnow, M., Krohn, S., Kaiser, T.M., 2012. Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates. J. Hum. Evol. 63, 85–98. https://doi.org/10.1016/j.jhevol.2012.05.001

DeMiguel, D., Azanza, B., Morales, J., 2011. Paleoenvironments and paleoclimate of the Middle Miocene of central Spain: A reconstruction from dental wear of ruminants. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 452–463. https://doi.org/10.1016/J.PALAEO.2011.02.005

DeSantis, L.R.G., 2016. Dental microwear textures: reconstructing diets of fossil mammals. Surf. Topogr. Metrol. Prop. 4, 023002. https://doi.org/10.1088/2051-672X/4/2/023002

Evander, R.L., 2004. Chapter 16: A Revised Dental Nomenclature for Fossil Horses. Bull. Am. Museum Nat. Hist. 285, 209–218. https://doi.org/10.1206/0003-0090(2004)285<0209:C>2.0.CO;2

Ferring, R., Oms, O., Agustí, J., Berna, F., Nioradze, M., Shelia, T., Tappen, M., Vekua, A., Zhvania, D., Lordkipanidze, D., 2011. Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85-1.78 Ma. Proc. Natl. Acad. Sci. U. S. A. 108, 10432–10436. https://doi.org/10.1073/pnas.1106638108

Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., Tesakov, A., Vislobokova, I., Zhang, Z., Zhou, L., 2002. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evol. Ecol. Res. 4, 1005–1016.

Fortelius, M., Solounias, N., 2000. Functional Characterization of Ungulate Molars Using the Abrasion-Attrition Wear Gradient: A New Method for Reconstructing Paleodiets. Am. Museum Novit. 3301, 1–36. https://doi.org/10.1206/0003-0082(2000)301<0001:FCOUMU>2.0.CO;2

Garcia, T., Féraud, G., Falguères, C., de Lumley, H., Perrenoud, C., Lordkipanidze, D., 2010. Earliest human remains in Eurasia: New 40Ar/39Ar dating of the Dmanisi hominid-bearing levels, Georgia. Quat. Geochronol. 5, 443–451. https://doi.org/10.1016/J.QUAGEO.2009.09.012

Gkeme, A., Koufos, G., Kostopoulos, D., 2017. The Early Pleistocene stenonoid horse from Libakos and Polylakkos (Western Macedonia, Greece): biochronological and palaeoecological implications and dispersal events, in: Book of Abstracts. 15th Congress of the Regional

Committee on Mediterranean Neogene Stratigraphy, Athens, pp. 67.

Green, J.L., Croft, D.A., 2018. Using dental mesowear and microwear for dietary inference: A review of current techniques and applications, in: Croft, D., Su, D., Simpson, S. (Eds.), Vertebrate Paleobiology and Paleoanthropology. Springer, Cham, pp. 53–73. https://doi.org/10.1007/978-3-319-94265-0_5

Hammer, D.A.T., Ryan, P.D., Hammer, Ø., Harper, D.A.T., 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4, 178.

Harvati, K., Panagopoulou, E., Runnels, C., 2009. The paleoanthropology of Greece. Evol. Anthropol. Issues, News, Rev. 18, 131–143. https://doi.org/10.1002/evan.20219

Harvati, K., Tourloukis, V., 2013. Human evolution in the Southern Balkans. Evol. Anthropol. Issues, News, Rev. 22, 43–45. https://doi.org/10.1002/evan.21342

Hedberg, C., DeSantis, L.R.G., 2017. Dental microwear texture analysis of extant koalas: clarifying causal agents of microwear. J. Zool. 301, 206–214. https://doi.org/10.1111/JZO.12413

Hermier, R., Merceron, G., Kostopoulos, D.S., 2020. The emblematic Eurasian Villafranchian antelope Gazellospira (Mammalia: Bovidae): New insights from the Lower Pleistocene Dafnero fossil sites (Northern Greece). Geobios 61, 11–29. https://doi.org/10.1016/j.geobios.2020.06.006

Hoffman, J.M., Fraser, D., Clementz, M.T., 2015. Controlled feeding trials with ungulates: a new application of in vivo dental molding to assess the abrasive factors of microwear. J. Exp. Biol. 218, 1538–1547. https://doi.org/10.1242/JEB.118406

Hullot, M., Laurent, Y., Merceron, G., Antoine, P.-O., 2021. Paleoecology of the Rhinocerotidae (Mammalia, Perissodactyla) from Béon 1, Montréal-du-Gers (late early Miocene, SW France): Insights from dental microwear texture analysis, mesowear, and enamel hypoplasia. Palaeontol. Electron. 24.

Kahlke, R.-D., García, N., Kostopoulos, D.S., Lacombat, F., Lister, A.M., Mazza, P.P.A., Spassov, N., Titov, V. V., 2011. Western Palaearctic palaeoenvironmental conditions during the Early and early Middle Pleistocene inferred from large mammal communities, and implications for hominin dispersal in Europe. Quat. Sci. Rev. 30, 1368–1395. https://doi.org/10.1016/j.quascirev.2010.07.020

Kaiser, T.M., Clauss, M., Schulz-Kornas, E., 2016. A set of hypotheses on tribology of mammalian herbivore teeth. Surf. Topogr. Metrol. Prop. 4, 014003. https://doi.org/10.1088/2051-672X/4/1/014003

Kay, R.F., 1977. The evolution of molar occlusion in the Cercopithecidae and early catarrhines. Am. J. Phys. Anthropol. 46, 327–352. https://doi.org/10.1002/ajpa.1330460213

Kelly, A., Miller, J.H., Wooller, M.J., Seaton, C.T., Druckenmiller, P., DeSantis, L., 2021. Dietary paleoecology of bison and horses on the mammoth steppe of eastern Beringia based on dental microwear and mesowear analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 572, 110394. https://doi.org/10.1016/J.PALAEO.2021.110394

Klingenberg, C.P., 2013. Visualizations in geometric morphometrics: How to read and how to make graphs showing shape changes. Hystrix 24. https://doi.org/10.4404/HYSTRIX-24.1-7691

Klingenberg, C.P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

Konidaris, G.E., Kostopoulos, D.S., Maron, M., Schaller, M., Ehlers, T.A., Aidona, E., Marini, M., Tourloukis, V., Muttoni, G., Koufos, G.D., Harvati, K., 2021. Dating of the Lower Pleistocene Vertebrate Site of Tsiotra Vryssi (Mygdonia Basin, Greece): Biochronology,

Magnetostratigraphy, and Cosmogenic Radionuclides. Quaternary 4, 1. https://doi.org/10.3390/quat4010001

Konidaris, G.E., Tourloukis, V., Kostopoulos, D.S., Thompson, N., Giusti, D., Michailidis, D., Koufos, G.D., Harvati, K., 2015. Two new vertebrate localities from the Early Pleistocene of Mygdonia Basin (Macedonia, Greece): Preliminary results. Comptes Rendus - Palevol 14, 353–362. https://doi.org/10.1016/j.crpv.2015.05.004

Kostopoulos, D.S., 1998. Parastrepsiceros koufosi n. sp. (Mammalia: Bovidae); note on the possible presence of a Prostrepsiceros descendant in the latest Pliocene of northern Greece. Acta Zool. Cracoviensia 4, 101–109.

Kostopoulos, D.S., 1996. The PlioPleistocene Artiodactyls (Mammalia) of Macedonia, Greece; Systematics, Biochronology, Biostratigraphy, Palaeoecology. Ph.D. thesis, Aristotle University of Thessaloniki, Thessaloniki. 671 pp.

Kostopoulos, D.S., Athanassiou, A., 2003. In the shadow of Bovids: Suids, Cervids and Giraffids from the Plio-Pleistocene of Greece. Quaternary 2, 179–190.

Kostopoulos, D.S., Koufos, G.D., 2000. Palaeoecological remarks on Plio-Pleistocene mammalian faunas. Bull. Geol. Soc. Greece.

Kostopoulos, D.S., Koufos, G.D., 1995. Palaeoecological remarks on the Villafranchian faunas of Macedonia, Greece., in: X Congress CMNRS. Journal of Paleontology Survey, Romania.

Kostopoulos, D.S., Maniakas, I., Tsoukala, E., 2018. Early bison remains from Mygdonia Basin (Northern Greece). Geodiversitas 40, 283. https://doi.org/10.5252/geodiversitas2018v40a13

Koufos, G.D., 2001. The Villafranchian mammalian faunas and biochronology of Greece. Boll. della Soc. Paleontol. Ital. 40, 217–223.

Koufos, G.D., 1992a. Early Pleistocene equids from Mygdonia basin (Makedonia, Greece). Palaeontogr. Ital. 79, 167–199.

Koufos, G.D., 1992b. The Pleistocene carnivores of the Mygdonia Basin (Macedonia, Greece). Ann. paléontologie 78, 205–275.

Koufos, G.D., 1986a. The presence of Gazella borbonica (Mammalia, Bovidae) in the Villafranchian (Villanyian) of Macedonia (Greece) and its significance to the stratigraphic distribution of the species. Neues Jahrb. für Geol. und Paläontologie - Monatshefte 541–554. https://doi.org/10.1127/NJGPM/1986/1986/541

Koufos, G.D., 1986b. The presence of sus strozzii in the Villafranchian (Villanyian) of Macedonia (Greece). Paläontologische Zeitschrift 1986 603 60, 341–351. https://doi.org/10.1007/BF02985678

Koufos, G.D., Kostopoulos, D.S., 2016. The Plio-Pleistocene large mammal record of Greece: Implications for early human Dispersals into Europe, in: Vertebrate Paleobiology and Paleoanthropology. Springer, pp. 269–280. https://doi.org/10.1007/978-94-024-0874-4_15

Koufos, G.D., Syrides, G.E., Kostopoulos, D.S., Koliadimou, K.K., 1995. Preliminary results about thestratigraphy and the palaeoenvironment of Mygdonia Basin, Macedonia, Greece. Geobios 28, 243–249. https://doi.org/10.1016/S0016-6995(95)80171-5

Lawing, A.M., Polly, P.D., 2010. Geometric morphometrics: recent applications to the study of evolution and development. J. Zool. 280, 1–7. https://doi.org/10.1111/j.1469-7998.2009.00620.x

Lazagabaster, I.A., 2019. Dental microwear texture analysis of Pliocene Suidae from Hadar and Kanapoi in the context of early hominin dietary breadth expansion. J. Hum. Evol. 132, 80–100. https://doi.org/10.1016/j.jhevol.2019.04.010

Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18 O records. Paleoceanography 20, 1–17. https://doi.org/10.1029/2004PA001071

Lordkipanidze, D., De Ponce León, M.S., Margvelashvili, A., Rak, Y., Rightmire, G.P., Vekua, A., Zollikofer, C.P.E., 2013. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science. 342, 326–331. https://doi.org/10.1126/science.1238484

Louail, M., Ferchaud, S., Souron, A., Walker, A.E.C., Merceron, G., 2021. Dental microwear textures differ in pigs with overall similar diets but fed with different seeds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 572, 110415. https://doi.org/10.1016/J.PALAEO.2021.110415

Lucas, P., Constantino, P., Wood, B., Lawn, B., 2008. Dental enamel as a dietary indicator in mammals. Bioessays 30, 374–385. https://doi.org/10.1002/BIES.20729

Lucas, W.P., 2004. Dental functional morphology : how teeth work, in: Sterling, E., Bynum, N., Blair, M. (Eds.), Primate Ecology and Conservation. Cambridge University Press, p. 355.

Martin, J.E., Tacail, T., Balter, V., 2017. Non-traditional isotope perspectives in vertebrate palaeobiology. Palaeontology 60, 485–502. https://doi.org/10.1111/pala.12300

Martin, J.E., Vance, D., Balter, V., 2015. Magnesium stable isotope ecology using mammal tooth enamel. Proc. Natl. Acad. Sci. U. S. A. 112, 430–435. https://doi.org/10.1073/pnas.1417792112

Martin, L.F., Krause, L., Ulbricht, A., Winkler, D.E., Codron, D., Kaiser, T.M., Müller, J., Hummel, J., Clauss, M., Hatt, J.M., Schulz-Kornas, E., 2020. Dental wear at macro- and microscopic scale in rabbits fed diets of different abrasiveness: A pilot investigation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 556, 109886. https://doi.org/10.1016/j.palaeo.2020.109886

Merceron, G., Berlioz, E., Vonhof, H., Green, D., Garel, M., Tütken, T., 2021. Tooth tales told by dental diet proxies: An alpine community of sympatric ruminants as a model to decipher the ecology of fossil fauna. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110077. https://doi.org/10.1016/j.palaeo.2020.110077

Merceron, G., Blondel, C., Bonis, L. De, Koufos, G.D., Viriot, L., 2005. A New Method of Dental Microwear Analysis: Application to Extant Primates and Ouranopithecus macedoniensis (Late Miocene of Greece). Palaios. https://doi.org/10.2307/27670377

Merceron, G., Blondel, C., Brunetiere, N., Francisco, A., Gautier, D., Ramdarshan, A., 2017. Dental microwear and controlled food testing on sheep: The TRIDENT project. Biosurface and Biotribology 3, 174–183. https://doi.org/10.1016/J.BSBT.2017.12.005

Merceron, G., Costeur, L., Maridet, O., Ramdarshan, A., Göhlich, U.B., 2012. Multi-proxy approach detects heterogeneous habitats for primates during the Miocene climatic optimum in Central Europe. J. Hum. Evol. 63, 150–161. https://doi.org/10.1016/J.JHEVOL.2012.04.006

Merceron, G., Escarguel, G., Angibault, J.-M.M., Verheyden-Tixier, H., 2010. Can dental microwear textures record inter-individual dietary variations? PLoS One 5, e9542. https://doi.org/10.1371/journal.pone.0009542

Merceron, G., Hofman-Kamińska, E., Kowalczyk, R., 2014. 3D dental microwear texture analysis of feeding habits of sympatric ruminants in the Białowieża Primeval Forest, Poland. For. Ecol. Manage. 328, 262–269. https://doi.org/10.1016/j.foreco.2014.05.041

Merceron, G., Novello, A., Scott, R.S., 2016a. Paleoenvironments inferred from phytoliths and Dental Microwear Texture Analyses of meso-herbivores. Geobios 49, 135–146. https://doi.org/10.1016/j.geobios.2016.01.004

Merceron, G., Ramdarshan, A., Blondel, C., Boisserie, J.-R., Brunetiere, N., Francisco, A., Gautier, D., Milhet, X., Novello, A., Pret, D., 2016b. Untangling the environmental from the dietary: dust does not matter. Proc. R. Soc. B Biol. Sci. 283. https://doi.org/10.1098/RSPB.2016.1032

Merceron, G., Schulz, E., Kordos, L., Kaiser, T.M., 2007. Paleoenvironment of Dryopithecus brancoi at Rudabánya, Hungary: evidence from dental meso- and micro-wear analyses of large vegetarian mammals. J. Hum. Evol. 53, 331–349. https://doi.org/10.1016/j.jhevol.2007.04.008

Messager, E., Lordkipanidze, D., Kvavadze, E., Ferring, C.R., Voinchet, P., 2010. Palaeoenvironmental reconstruction of Dmanisi site (Georgia) based on palaeobotanical data. Quat. Int. 223–224, 20–27. https://doi.org/10.1016/j.quaint.2009.12.016

Mihlbachler, M.C., Rivals, F., Solounias, N., Semprebon, G.M., 2011. Dietary Change and Evolution of Horses in North America. Science. 331, 1178–1181. https://doi.org/10.1126/science.1196166

R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

Ramdarshan, A., Blondel, C., Brunetière, N., Francisco, A., Gautier, D., Surault, J., Merceron, G., 2016. Seeds, browse, and tooth wear: a sheep perspective. Ecol. Evol. 6, 5559–5569. https://doi.org/10.1002/ece3.2241

Ramdarshan, A., Blondel, C., Gautier, D., Surault, J., Merceron, G., 2017. Overcoming sampling issues in dental tribology: Insights from an experimentation on sheep. Palaeontol. Electron. https://doi.org/10.26879/762

Richtsmeier, J.T., DeLeon, V.B., Lele, S.R., 2002. The promise of geometric morphometrics. Yearb. Phys. Anthropol. 45, 63–91. https://doi.org/10.1002/ajpa.10174

Rivals, F., Athanassiou, A., 2008. Dietary adaptations in an ungulate community from the late Pliocene of Greece. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, 134–139.

Rivals, F., Semprebon, G.M., 2006. A comparison of the dietary habits of a large sample of the Pleistocene pronghorn Stockoceros onusrosagris from the Papago Springs Cave in Arizona to the modern Antilocapra americana. J. Vertebr. Paleontol. 26, 495–500. https://doi.org/10.1671/0272-4634(2006)26[495:ACOTDH]2.0.CO;2

Rivals, F., Solounias, N., Schaller, G.B., 2011. Diet of Mongolian gazelles and Tibetan antelopes from steppe habitats using premaxillary shape, tooth mesowear and microwear analyses. Mamm. Biol. 2011 763 76, 358–364. https://doi.org/10.1016/J.MAMBIO.2011.01.005

Rohlf, F.J., 2019. tpsUtil. http://www.sbmorphometrics.org/soft-utility.html

Rohlf, F.J., 2017. tpsDig. http://www.sbmorphometrics.org/soft-utility.html

Rohlf, F.J., 2015. The tps series of software. Hystrix 26, 1–4. https://doi.org/10.4404/hystrix-26.1-11264

Schulz, E., Calandra, I., Kaiser, T.M., 2010. Applying tribology to teeth of hoofed mammals. Scanning 32, 162–182. https://doi.org/10.1002/sca.20181

Schulz, E., Piotrowski, V., Clauss, M., Mau, M., Merceron, G., Kaiser, T.M., 2013. Dietary Abrasiveness Is Associated with Variability of Microwear and Dental Surface Texture in Rabbits. PLoS One 8, e56167. https://doi.org/10.1371/JOURNAL.PONE.0056167

Scott, J.R., 2012. Dental microwear texture analysis of extant African Bovidae. Mammalia 76, 157–174. https://doi.org/10.1515/MAMMALIA-2011-0083

Scott, R.S., Teaford, M.F., Ungar, P.S., 2012. Dental microwear texture and anthropoid diets. Am. J. Phys. Anthropol. 147, 551–579. https://doi.org/10.1002/ajpa.22007

Scott, R.S., Ungar, P.S., Bergstrom, T.S., Brown, C.A., Childs, B.E., Teaford, M.F., Walker, A., 2006. Dental microwear texture analysis: technical considerations. J. Hum. Evol. 51, 339–349. https://doi.org/10.1016/j.jhevol.2006.04.006

Scott, R.S., Ungar, P.S., Bergstrom, T.S., Brown, C.A., Grine, F.E., Teaford, M.F., Walker, A., 2005. Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature 436, 693–695. https://doi.org/10.1038/nature03822

Shipley, L., 2010. Fifty years of food and foraging in moose: lessons in ecology from a model herbivore. Alces A J. Devoted to Biol. Manag. Moose 46, 1–13.

Sioban, B.C., Terhune, E.C., 2015. Form, function, and geometric morphometrics. Anat. Rec. (Hoboken). 298, 5–28. https://doi.org/10.1002/AR.23065

Solounias, N., Rivals, F., Semprebon, G.M., 2010. Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (late Miocene of Greece). Paleobiology 36, 113–136. https://doi.org/10.1666/0094-8373-36.1.113

Solounias, N., Semprebon, G.M., 2002. Advances in the Reconstruction of Ungulate Ecomorphology with Application to Early Fossil Equids. Am. Museum Novit. 3366, 1–49. https://doi.org/10.1206/0003-0082(2002)366<0001:AITROU>2.0.CO;2

Solounias, N., Tariq, M., Hou, S., Danowitz, M., Harrison, M., 2014. A New Method of Tooth Mesowear and a Test of it on Domestic Goats. Ann. Zool. Fennici 51, 111–118. https://doi.org/10.5735/086.051.0212

Souron, A., Merceron, G., Blondel, C., Brunetière, N., Colyn, M., Hofman-Kamińska, E., Boisserie, J.-R., 2015. Three-dimensional dental microwear texture analysis and diet in extant Suidae (Mammalia: Cetartiodactyla). Mammalia 79, 279–291. https://doi.org/10.1515/mammalia-2014-0023

Stauffer, J.B., Clauss, M., Müller, D.W.H., Hatt, J.-M., Ackermans, N.L., 2019. Testing Inner-Mesowear III on Goats (Capra aegagrus hircus) Fed Experimental Diets. Ann. Zool. Fennici 56, 85. https://doi.org/10.5735/086.056.0108

Suc, J.-P., 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nat. 1984 3075950 307, 429–432. https://doi.org/10.1038/307429a0

Teaford, M.F., Oyen, O.J., 1989. Differences in the Rate of Molar Wear between Monkeys Raised on Different Diets. J. Dent. Res. 68, 1513–1518. https://doi.org/10.1177/00220345890680110901

Teaford, M.F., Ungar, P.S., Taylor, A.B., Ross, C.F., Vinyard, C.J., 2020. The dental microwear of hard‐object feeding in laboratory Sapajus apella and its implications for dental microwear formation. Am. J. Phys. Anthropol. 171, 439–455. https://doi.org/10.1002/ajpa.24000

Thenius, E., 1989. Zähne und Gebiß der Säugetiere, in: Niethammer, J., Schliemann, H., Starck, D. (Eds.), Handbook of Zoology. Verlag Walter de Gruyter, New York, p. 513.

Tourloukis, V., 2010. The Early and Middle Pleistocene archaeological record of Greece : current status and future prospects. Leiden University Press, Leiden.

Tourloukis, V., Karkanas, P., 2012. The Middle Pleistocene archaeological record of Greece and the role of the Aegean in hominin dispersals: new data and interpretations. Quat. Sci. Rev. 43, 1–15. https://doi.org/10.1016/J.QUASCIREV.2012.04.004

Tsartsidou, G., Lev-Yadun, S., Albert, R.M., Miller-Rosen, A., Efstratiou, N., Weiner, S., 2007. The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J. Archaeol. Sci. 34, 1262–1275. https://doi.org/10.1016/j.jas.2006.10.017

Ungar, P.S., 2015. Mammalian dental function and wear: A review. Biosurface and Biotribology 1, 25–41. https://doi.org/10.1016/j.bsbt.2014.12.001

Ungar, P.S., Brown, C.A., Bergstrom, T.S., Walker, A., 2003. Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scanning 25, 185–193. https://doi.org/10.1002/sca.4950250405

Ungar, P.S., Merceron, G., Scott, R.S., 2007. Dental Microwear Texture Analysis of Varswater Bovids and Early Pliocene Paleoenvironments of Langebaanweg, Western Cape Province, South Africa. J. Mamm. Evol. 3, 163–181. https://doi.org/10.1007/S10914-007-9050-X

Valli, A.M.F., Palombo, M.R., 2008. Feeding behaviour of middle-size deer from the Upper Pliocene site of Saint-Vallier (France) inferred by morphological and micro/mesowear analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 106–122.

Walker, A., Hoeck, H.N., Perez, L., 1978. Microwear of mammalian teeth as an indicator of diet. Science (80-. ). 201, 908–910. https://doi.org/10.1126/science.684415

Winkler, D.E., Kaiser, T.M., 2011. A case study of seasonal, sexual and ontogenetic divergence in the feeding behaviour of the moose (Alces alces Linné, 1758). Verhandlungen des naturwissenschaftlichen Vereins Hambg. 46, 331–348.

Winkler, D.E., Schulz-Kornas, E., Kaiser, T.M., Codron, D., Leichliter, J., Hummel, J., Martin, L.F., Clauss, M., Tütken, T., 2020. The turnover of dental microwear texture: Testing the” last supper” effect in small mammals in a controlled feeding experiment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 557, 109930. https://doi.org/10.1016/j.palaeo.2020.109930


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.