[Εξώφυλλο]

Olimpi mud volcanoes sedimentary records (Hellenic arc): geochemical and micropaleontological characterization = Ιζηματολογική καταγραφή του πεδίου λασποηφαιστείων Olimpi (Ελληνικό Τόξο): γεωχημικός και μικροπαλαιοντολογικός χαρακτηρισμός.

Nikitas P. Anastasios

Περίληψη


This master thesis produces scientific information concerning the mud breccia extruded from five (5) mud volcanoes of the Olimpi MV field (Mediterranean Ridge). In total, 42 samples (14 mud breccia matrix and 28 clasts samples) were retrieved and studied. Routine micropaleontological (calcareous nannoplankton) analysis has been performed in order to determine the possible age of the deep-seated source strata. In addition, for the first time, the total organic carbon and thermal maturity of samples recovered from deep (sub-salt) layers of the Mediterranean Ridge were determined through organic geochemical study (Rock-Eval pyrolysis) and an attempt to evaluate the  oil and gas potential of the sediments has been made. It is concluded that: (1) mudstone/shale clasts of different stratigraphic position were found and attributed to biozones NN7, NN6, NN5, NN4 and NP24, (2) some samples showed a heavy mixing of Miocene and Oligocene nannofossils while others appeared to be barren of nannofossils and consequently could not be dated, (3) samples appeared to be both organic rich (TOC>0.5) and poor (TOC<0.5), mostly comprised of Type III kerogen which is considered immature – nearly mature, with respect to gas and/or oil generation and poor to fair generative potential and (4) a single mudstone clast attributed to NN7 showed a completely different micropaleontological and geochemical image and is considered as of sapropelic origin. The above information seems to confirm and add more information in the S-SW orogen migration theory.

Η παρούσα Μεταπτυχιακή Διατριβή Ειδίκευσης (ΜΔΕ) παρουσιάζει επιστημονικές πληροφορίες σχετικά με τα ιζήματα τύπου "mud breccia" τα οποία αποτίθενται στον πυθμένα της θάλασσας από πέντε (5) δομές λασποηφαιστείων του πεδίου Olimpi (Μεσογειακή Ράχη). Συνολικά, 42 δείγματα (14 δείγματα λασπώδους ιστού "matrix" και 28 δείγματα συμπαγοποιημένου ιζήματος "clasts") ανακτήθηκαν και μελετήθηκαν. Πραγματοποιήθηκε μικροπαλαιοντολογική ανάλυση του περιεχομένου σε ασβεστολιθικό ναννοπλαγκτόν με σκοπό την χρονολόγηση των βαθιά θαμμένων στρωμάτων από όπου προέρχονται τα ιζήματα. Επίσης, για πρώτη φορά πραγματοποιήθηκε μέτρηση του ολικού οργανικού άνθρακα και της θερμικής ωριμότητας από δείγματα των βαθιά θαμμένων (υποκείμενα των εβαποριτών) στρωμάτων της Μεσογειακής Ράχης μέσω οργανικής γεωχημικής μελέτης (Rock-Eval pyrolysis) και πραγματοποιήθηκε αξιολόγηση του πετρελαϊκού δυναμικού τους. Συμπερασματικά: (1) καθορίστηκαν πηλολιθικοί/σχιστοπηλολιθικοί κλάστες διαφορετικής στρωματογραφικής προέλευσης, οι οποίοι αντιστοιχούν στις βιοζώνες ΝΝ7, ΝΝ6, ΝΝ5, ΝΝ4 και ΝP24, (2) σε μερικά δείγματα παρουσιάζεται εικόνα έντονης μίξης ναννοαπολιθωμάτων του Μειοκάινου και Ολιγοκαίνου ενώ άλλα δείγματα δεν περιείχαν καθόλου ναννοαπολιθώματα και συνεπώς ήταν αδύνατη η χρονολόγησή τους, (3) καθορίστηκαν δείγματα πλούσια (TOC>0.5) και φτωχά (TOC<0.5) σε οργανικό υλικό, αποτελούμενα από κηρογόνο Τύπου ΙΙΙ, θερμικά ανώριμα εως οριακά ώριμα, ικανά για την παραγωγή φυσικού αερίου ή/και πετρελαίου και μικρή έως ικανοποιητική παραγωγική ικανότητα και (4) καθορίστηκε ένας πηλολιθικός κλάστης, βιοζώνης ΝΝ7, με εντελώς διαφορετική μικροπαλαιοντολογική και γεωχημική εικόνα, ο οποίος και θεωρήθηκε σαπροπηλικής προέλευσης. Οι παραπάνω πληροφορίες επιβεβαιώνουν προηγούμενες και προσθέτουν επιπλέον πληροφορίες στην Ν-ΝΔ μετανάστευση του (Ελληνικού) ορογενούς.

Πλήρες Κείμενο:

PDF

Αναφορές


Agnini, C., Monechi, S., & Raffi, I. (2017). Calcareous nannofossil biostratigraphy: historical background and application in Cenozoic chronostratigraphy. Lethaia, 50(3), 447-463.

Aloisi, G., Pierre, C., Rouchy, J. M., Foucher, J. P., & Woodside, J. (2000). Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth and Planetary Science Letters, 184(1), 321-338.

Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., & Huchon, P. (1982). The tectonic development of the Hellenic arc and the Sea of Crete: a synthesis. Tectonophysics, 86(1-3), 159-196.

Backman, J., Raffi, I., Rio, D., Fornaciari, E., & Pälike, H. (2012). Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, 45(3), 221-244.

Camerlenghi, A., Cita, M. B., Della Vedova, B., Fusi, N., Mirabile, L., & Pellis, G. (1995). Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Marine Geophysical Researches, 17(2), 115-141.

Camerlenghi, A., Cita, M. B., Hieke, W., & Ricchiuto, T. (1992). Geological evidence for mud diapirism on the Mediterranean Ridge accretionary complex. Earth and Planetary Science Letters, 109(3-4), 493-504.

Cita, M. B., RYAN, W. F., & Paggi, L. (1981). Prometheus mud breccia: an example of shale diapirism in the western Mediterranean ridge. In Annales geologiques des Pays helleniques (Vol. 30, pp. 543-570).

Cita, M. B., RYAN, W. F., & Paggi, L. (1981). Prometheus mud breccia: an example of shale diapirism in the western Mediterranean ridge. In Annales geologiques des Pays helleniques (Vol. 30, pp. 543-570).

Dählmann, A., & De Lange, G. J. (2003). Fluid–sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth and Planetary Science Letters, 212(3-4), 377-391.

De Lange, G.J., and Brumsack, H.-J. (1998). Pore-water indications for the occurrence of gas hydrates in Eastern Mediterranean mud dome structures. In Robertson,

A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), 569–574.

Dimitrov, L. I. (2002). Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59(1-4), 49-76.

Emeis, K.-C, Robertson, A.H.F., Richter, C, et al., (1996). Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 160; Chapter 11. SITE 970

Emeis, K.-C, Robertson, A.H.F., Richter, C, et al., (1996). Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 160; Chapter 12. SITE 971

Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., & Boutefeu, A. (1977). Rapid method for source rocks characterization and for determination of petroleum potential and degree of evolution. Revue De L Institut Francais Du Petrole, 32(1), 23-42.

Espitalie, J., Madec, M., Tissot, B., Mennig, J. J., & Leplat, P. (1977, January). Source rock characterization method for petroleum exploration. In Offshore Technology Conference. Offshore Technology Conference.

Fassoulas, C., Kilias, A., & Mountrakis, D. (1994). Postnappe stacking extension and exhumation of high‐pressure/low‐temperature rocks in the island of Crete, Greece. Tectonics, 13(1), 127-138.

Fusi, N., & Kenyon, N. H. (1996). Distribution of mud diapirism and other geological structures from long-range sidescan sonar (GLORIA) data, in the Eastern Mediterranean Sea. Marine Geology, 132(1-4), 21-38.

Haese, R. R., Hensen, C., & de Lange, G. J. (2006). Pore water geochemistry of eastern Mediterranean mud volcanoes: Implications for fluid transport and fluid origin. Marine Geology, 225(1-4), 191-208.

Hunt, J. M. (1995). Petroleum geochemistry and geology. New York, NY: W.H. Freeman.

Jackson, K. S., Hawkins, P. J., & Bennett, A. J. R. (1980). Regional facies and geochemical evaluation of the southern Denison Trough, Queensland. The APPEA Journal,

(1), 143-158.

Jiang, C., Chen, Z., Lavoie, D., Percival, J. B., & Kabanov, P. (2017). Mineral carbon MinC (%) from Rock-Eval analysis as a reliable and cost-effective measurement of carbonate contents in shale source and reservoir rocks. Marine and Petroleum Geology, 83, 184-194.

Kidd, R. B., RB, K., MB, C., & WBF, R. (1978). Stratigraphy of eastern Mediterranean sapropel sequences recovered during DSDP Leg 42A and their paleoenvironmental significance.

Kilias, A., Fassoulas, C., & Mountrakis, D. (1993). Tertiary extension of continental crust and uplift of Psiloritis metamorphic core complex at the central part of the Hellenic arc. Bull. Geol. Soc. Greece, 28, 297-314.

Killops, S. D., & Killops, V. J. (2013). Introduction to organic geochemistry. John Wiley & Sons.

Kopf, A., Robertson, A. H. F., & Volkmann, N. (2000). Origin of mud breccia from the Mediterranean Ridge accretionary complex based on evidence of the maturity of organic matter and related petrographic and regional tectonic evidence. Marine Geology, 166(1-4), 65-82.

Le Pichon, X., & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60(1-2), 1-42.

Limonov, A. F., Woodside, J. M., Cita, M. B., & Ivanov, M. K. (1996). The Mediterranean Ridge and related mud diapirism: a background. Marine Geology, 132(1-4), 7-19.

Lourens, L. J., Hilgen, F. J., Shackleton, N. J., Laskar, J., & Wilson, D. (2004). The Neogene Period: 469-471 in. A geologic time scale.

Luterbacher, H. P. (2004). The paleogene period. A geologic time scale 2004, 384-408.

Manutsoglu, E., Soujon, A., & Jacobshagen, V. (2003). Tectonic structure and fabric development of the Plattenkalk unit around the Samaria gorge, Western Crete, Greece.

Zeitschrift der Deutschen Geologischen Gesellschaft, 154(1), 85-100.

Marsaglia, K., Tentori, D., Milliken, K., Leckie, R. M., & Doran, L. (2014, October). IODP Digital Reference for Smear Slide Analysis of Marine Mud Part 2: Methodolgy and

Atlas of Biogenic Components. In 2014 GSA Annual Meeting in Vancouver, British Columbia.

Martini, E. (1971). Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Proc. II Planktonic Conference, Roma 1970, Roma, Tecnoscienza (Vol. 2, pp. 739-785).

Mascle, J., Mary, F., Praeg, D., Brosolo, L., Camera, L., Ceramicola, S., & Dupré, S. (2014). Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz. Geo-Marine Letters, 34(2-3), 89-110.

Mountrakis, D. (2002). Tectonic evolution of the Hellenic orogen: Geometry and kinematics of deformation. Bull. Geol. Soc. Greece, 34(6), 2113-2126.

Okada, H. & Bukry, D. 1980: Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry 1973; 1975). Marine Micropaleontology 5, 321–325

Panagiotopoulos, I. P., Paraschos, F., Rousakis, G., Hatzianestis, I., Parinos, C., Morfis, I., & Gogou, A. (2020). Assessment of the eruptive activity and identification of the mud breccia's source in the Olimpi mud volcano field, Eastern Mediterranean. Deep Sea Research Part II: Topical Studies in Oceanography, 171, 104701.

Perissoratis, C., Ioakim, C., Alexandri, S., Woodside, J., Nomikou, P., Dählmann, A. & Lykousis, V. (2011). Thessaloniki mud volcano, the shallowest gas hydrate-bearing mud volcano in the Anaximander Mountains, Eastern Mediterranean. Journal of Geological Research, 2011.

Peters, K. E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG bulletin, 70(3), 318-329.

Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). Biomarkers and isotopes in petroleum exploration and earth history. The Biomarker Guide, 2, 700.

Robertson, A. H., & Kopf, A. (1998). Tectonic setting and processes of mud volcanism on the Mediterranean Ridge accretionary complex: evidence from Leg 160.

Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 160; Chapter 50.

Schulz, H. M., Emeis, K. C., & Volkmann, N. (1997). Organic carbon provenance and maturity in the mud breccia from the Napoli mud volcano: Indicators of origin and burial depth. Earth and planetary science letters, 147(1-4), 141-151.

Silva, I. P., Erba, E., Spezzaferri, S., & Cita, M. B. (1996). Age variation in the source of the diapiric mud breccia along and across the axis of the Mediterranean Ridge Accretionary Complex. Marine geology, 132(1-4), 175-202.

Staffini, F., Spezzaferri, S., & Aghib, F. (1993). Mud diapirs of the Mediterranean Ridge: sedimentological and micropaleontological study of the mud breccia. Rivista italiana di paleontologia e stratigrafia, 99(2).

Taylforth, J. E., McCay, G. A., Ellam, R., Raffi, I., Kroon, D., & Robertson, A. H. (2014). Middle Miocene (Langhian) sapropel formation in the easternmost Mediterranean deep-water basin: Evidence from northern Cyprus. Marine and Petroleum Geology, 57, 521-536.

Tissot, B. P., & Welte, D. H. (2013). Petroleum formation and occurrence. Springer Science & Business Media.

Triantaphyllou, M. V. (2013). Calcareous nannofossil dating of Ionian and Gavrovo flysch deposits in the External Hellenides Carbonate Platform (Greece): Overview and implications. Tectonophysics, 595, 235-249.

Waples, D. W. (2013). Geochemistry in petroleum exploration. Springer Science & Business Media.

Woodside, J. M., Ivanov, M. K., & Limonov, A. F. (1998). Shallow gas and gas hydrates in the Anaximander Mountains region, eastern Mediterranean Sea. Geological Society, London, Special Publications, 137(1), 177-193.

Woodside, J.M., Ivanov, M.K., Limonov, A.F., (Eds.), 1997. Neotectonics and fluid flow through seafloor sediments in the Eastern Mediterranean and Black Seas—Parts I and II. IOC Tech. Ser. 48.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.